Uncertainty Quantification for Applications of 239Pu Fission Cross Sections Using a Monte Carlo Technique
نویسنده
چکیده
We present an approach to uncertainty quantification for nuclear applications, which combines the covariance evaluation of differential cross-sections data and the error propagation from matching a criticality experiment using a neutron-transport calculation. We have studied the reduction in uncertainty of Pu fission cross sections by using a one-dimensional neutron-transport calculation with the PARTISN code. The evaluation of Pu differential cross-section data is combined with a criticality measurement (Jezebel) using a Bayesian method. To quantify the uncertainty in such calculations, we generate a set of random samples of the cross sections, which represents the covariance matrix, and estimate the distribution of calculated quantities, such as criticality. We show that inclusion of the Jezebel data reduces uncertainties in estimating neutron multiplicity.
منابع مشابه
Roughness uncertainty analysis in river flooding using HEC-RAS model
Although flood maps based on the deterministic approach play an important role in minimizing flood losses, there is considerable uncertainty in calculating the level of water inundation. Roughness is a key parameter in water surface elevation. Since roughness is not easily measurable and is estimated based on experimental and laboratory methods, it introduces a significant degree of uncertainty...
متن کاملBayesian Analysis of Inconsistent Measurements of Neutron Cross Sections
The evaluation of neutron cross sections as a function of energy is fraught with inconsistent measurements. I describe a Bayesian approach to deal with the inconsistencies by probabilistically modeling the possibility of discrepant data and data sets with long-tailed likelihood functions. Systematic normalization uncertainties in each data set are included by considering the normalization to be...
متن کاملNondestructive Assay Measurements Using the RPI Lead Slowing-Down Spectrometer
The use of a lead slowing-down spectrometer (LSDS) is considered as a possible option for nondestructive assay of fissile material of used nuclear fuel. The primary objective is to quantify fissile isotopes, particularly 239Pu and 235U, via a direct measurement distinguishing them through their characteristic fission spectra in the LSDS. In this paper, we present several assay measurements perf...
متن کاملMonte Carlo Hauser - Feshbach predictions of prompt fission γ rays : Application to n th + 235 U , n th + 239 Pu , and 252 Cf ( sf )
The prompt neutron and γ emission from primary fission fragments are calculated for thermal neutron induced fission of 235U and 239Pu and for spontaneous fission of 252Cf using a Monte Carlo Hauser-Feshbach approach for the evaporation of the excited fission fragments. Remaining free model parameters, such as excitation energy sharing and initial spin distribution, are determined by comparison ...
متن کاملAn Efficiency Studying of an Ion Chamber Simulation Using Vriance Reduction Techniques with EGSnrc
Background: Radiotherapy is an important technique of cancer treatment using ionizing radiation. The determination of total dose in reference conditions is an important contribution to uncertainty that could achieve 2%. The source of this uncertainty comes from cavity theory that relates the in-air cavity dose and the dose to water. These correction factors are determined from Monte Carlo calcu...
متن کامل